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The paper studies the radiation and diffraction by floating bodies of deep-water 
bichromatic and bidirectional surface waves subject to the second-order free-surface 
condition. A theory is developed for the evaluation of the second-order velocity 
potential and wave forces valid for bodies of arbitrary geometry, which does not 
involve the evaluation of integrals over the free surface or require an increased 
accuracy in the solution of the linear problem. Explicit sum- and difference- 
frequency ‘Green functions ’ are derived for the radiation and diffraction problems, 
obtained from the solution of initial-value problems that ensure they satisfy the 
proper radiation condition a t  infinity. The second-order velocity potential is 
expressed as the sum of a particular and a homogeneous component. The former 
satisfies the non-homogeneous free-surface condition and is expressed explicitly in 
terms of the second-order Green functions. The latter is subject to the homogeneous 
free-surface condition and enforces the body boundary condition by the solution of 
a linear problem. An analysis is carried out of the singular behaviour of the second- 
order potential near the intersection of the body boundary with the free surface. 

1. Introduction 
The prediction of the wave loads and responses of offshore structures requires in 

principle the solution of complex nonlinear surface-wave radiation and diffraction 
problems. The volume and complexity of the associated computational effort 
encouraged their alternative treatment by a perturbation series expansion with 
respect to the wave slope. The leading term in such a series leads to the classical 
linear wave-body interaction problem, which has received extensive analytical and 
numerical treatment and has proven a valuable and reliable tool in practice. The 
linear theory is reviewed by Wehausen (1971) and Newman (1983), and its numerical 
aspects by Yeung (1982). 

Quantities of practical interest which cannot be accounted for by linear theory 
include the slowly-varying hydrodynamic excitation responsible for large excursions 
of bodies constrained by weak restoring forces, and the rapidly varying hydro- 
dynamic pressure force which contributes to the fatigue of offshore structures. 
These effects can be evaluated by the solution of the second-order problem in which 
the free-surface condition is non-homogeneous. The forcing terms involve quadratic 
products of the linear velocity potential and its spatial derivatives, and extend over 
the entire free surface. The solution of the resulting boundary-value problem is a 
substantially more complex task relative to its linear counterpart because of the 
infinite extent of the non-homogeneity of the free-surface condition and the 
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approximate knowledge of the linear solution on the free surface. The second-order 
wave-body interaction theory is reviewed by Ogilvie (1983). 

Several existing numerical solutions of the second-order radiation and diffraction 
problems are based on the application of Green's identity using the linear wave- 
source potential or the Rankine source 1/r as the Green function. Either choice leads 
to the evaluation of slowly convergent integrals over the free surface involving 
products of the forcing term in the second-order free-surface condition with the 
Green function. Their computation in three dimensions is time consuming and 
requires accurate values of the linear velocity potential and its gradients. 

The present paper develops an alternative methodology for the solution of the 
second-order bichromatic radiation and diffraction problems which does not require 
the evaluation of infinite free-surface integrals. It is valid for bodies of arbitrary 
geometry and its numerical implementation is easy to carry out using existing 
boundary-integral methods. The method hinges on the derivation of two second- 
order Green functions which can be expressed in the form of explicit Fourier 
integrals, analogous to that in the definition of the linear wave-source potential 
(Wehausen & Laitone 1960, equation (13.15)). The diffraction Green function is the 
velocity potential which represents the second-order interaction of a regular plane 
progressive wave of frequency wo with a submerged point source pulsating in a time- 
harmonic manner a t  a frequency wl. The radiation Green function is the velocity 
potential representing the second-order interaction of two submerged point sources 
placed at two different locations and pulsating a t  two different frequencies w1 and 
w 2 .  Explicit solutions of these second-order problems are derived in the time domain, 
and their sum- and difference-frequency time-harmonic limits are obtained in the 
limit as time tends to infinity. This process ensures that they satisfy the proper 
radiation condition at infinity. The derivation of the Green functions is presented in 

The radiation and diffraction Green functions permit the construction of an 
explicit particular solution of the second-order problem. It is obtained in terms of the 
known linear radiation and diffraction velocity potentials on the body boundary and 
the second-order Green functions. It satisfies the non-homogeneous free-surface 
condition but not the normal velocity condition on the body boundary. The latter is 
enforced by the addition of a homogeneous component subject to  the linear free- 
surface condition which can be determined using standard boundary-integral 
methods of linear theory. The sum of the particular and homogeneous components 
is the complete solution of the second-order velocity potential. The particular 
solution is regular on the body boundary and its interior and can be regarded as an 
incident potential flow which interacts with the body generating the homogeneous 
solution. If only the second-order forces are required, reciprocity relations directly 
analogous to the Haskind relations in linear theory can be derived. They involve 
integrals of the particular solution and an auxiliary linear potential over the body 
boundary. Here, the particular solution being harmonic in the entire fluid domain 
plays the role of the ambient regular waves in the linear problem. The formulation 
of the second-order problem is presented in $ 4  and its solution is given in $5. 

For bodies which pierce the free surface, the second-order velocity potential 
develops a singular behaviour in the vicinity of the body waterline. This behaviour 
is analysed in $ 5  for a model two-dimensional problem for an intersection angle of 
90". It is shown that the second-order potential forced by the linear diffraction 
problem is analytic at the intersection. The second-order radiation potential, on the 
other hand, develops a singularity when forced by the linear sway and roll potentials, 

§3. 



Radiution and diflruction of second-order surface waves by $outing bodies 67 

but remains analytic when forced only by the linear heave potential. In  the former 
case, the value of the radiation potential a t  the intersection is finite but its vertical 
derivative is infinite. Moreover, it is shown that the forcing terms in the second-order 
free-surface condition develop a logarithmic singularity a t  the intersection which 
may require careful treatment in numerical solutions which integrate the free-surface 
inhomogeneity by quadrature. 

The radiation condition in the present method of solution of the second-order 
problem is imbedded in its particular and homogeneous components. The radiation 
condition obeyed by the former is similar to the far-field behaviour of the second- 
order radiation and diffraction Green functions. The homogeneous solution is 
obtained from the solution of a linear problem, therefore it satisfies the Sommerfeld 
radiation condition a t  infinity. The radiation condition in the monochromatic 
diffraction problem has been studied by Molin (1979). A more complete radiation 
condition for the bichromatic second-order radiation and diffraction problems, 
including terms not accounted for by Molin, is derived by Wang (1987). 

In $6 expressions are derived for the forces (moments are understood hereinafter) 
corresponding to the component of the second-order problem driven by the non- 
homogeneity of the free-surface condition. They are based on both the direct 
integration of the hydrodynamic pressure over the body boundary as well as the use 
of reciprocity relations similar to the Haskind exciting forces in linear theory. The 
latter express the forces in terms of the particular solution and an auxiliary linear 
potential. The forces corresponding to the component of the problem subject to the 
second-order body boundary condition and the linear free-surface condition can also 
be obtained either by direct pressure integration or by the application of the 
reciprocity relations. In  the latter case, it is shown that the double gradients of the 
linear velocity potentials present in the second-order body boundary condition can 
be reduced to single gradients by virtue of a vector theorem used in the evaluation 
of the hydrodynamic coefficients in ship motion theory by Ogilvie & Tuck (1969). 
This reduction in the order of the spatial derivatives of the linear solution which 
must be evaluated on the body boundary is a desirable property in connection with 
numerical solutions based on boundary integral methods. 

The principal computational task in the implementation of the present theory is 
the definition of the particular solution, or equivalently the evaluation of the second- 
order radiation and diffraction Green functions. The determination of the 
homogeneous component requires an effort comparable to that associated with the 
solution of a linear problem. By comparison to existing numerical solutions, 
knowledge is required only of the linear velocity potential over the body boundary 
with an accuracy which is not expected to exceed that of the linear quantities. 

The present theory can be generalized to the case where the water depth is finite 
by deriving the finite-depth second-order Green functions. This as well as further 
extensions, are discussed in $7. 

2. Formulation - the linear Green function 
Figure 1 illustrates a Cartesian coordinate system (x,y,z)  fixed relative to the 

undisturbed position of the free surface ( z  = 0 plane, with the z-axis pointing 
upwards. A potential flow is assumed, governed by the velocity potential @(x, t )  
which satisfies the Laplace equation in the fluid domain and the nonlinear free- 
surface condition 

@~,+g~,+2v@.v@,+~v@-v(v@.v@) = 0, (2.1) 
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[(x, y) = - - ( + +V@. V@),=,. 

Postulating the existence of the perturbation series expansion for @ and 5, 

@ = @ ( 1 ) + @ ( 2 ) +  ..., (2-3) 

6 = [(I) + [ ( Z )  + . . . (2.4) 

the leading term in the series satisfies the linear free-surface condition obtained by 
Taylor expanding (2.1) and ( 2 . 2 )  around the calm-water position z = 0 

@it)+g@$') = 0, on z = 0, ( 2 . 5 )  

(2.61 
1 

g 
[(I) = - - @(1)( 

t z=o' 

The free-surface condition (2.5) must be supplemented by initial conditions 
appropriate to the problem being studied. We consider here a linear wave disturbance 
of the form 

The first component is a deep-water regular plane progressive wave persisting for all 
time and defined by 

@,, = Re (qo eiwot), cpo = - igA ev,z-iv,x+iw,t (2 .8a ,  b)  

where g is the acceleration due to gravity, A is the wave amplitude, wo is its frequency 
and vo = wi /g .  The second and third components in (2.7) are the velocity potentials 
of two sources located a t  (&, v i ,  [J, i = 1 ,2  which start pulsating from rest with 
strengths coswit,i = 1, 2 .  The respective velocity potentials are subject to the free- 
surface condition (2 .5)  the initial conditions of zero wave elevation and zero pressure- 
impulse on the free surface, and are given by (Stoker 1957) 

@(l) = Q0 + QZ, + Q2. (2.7) 

% 

x 1: d7 sin ( ( g k ) t ( t - - 7 ) )  eiotr, (2.9) 

where 

7. = ( ( x - ~ i ) 2 + ( y - v i ) 2 + ( Z - [ T i ) 2 ) t ,  r /  = ( ( x - 5 i ) 2 + ( y - - T i ) 2 + ( X + [ i ) 2 ) a .  

The time-convolution integral in (2.9) can be evaluated explicitly in the form 
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Upon substitution of (2.10) into (2.9), the k-integration over the pole a t  k = w 2 / g  
is interpreted in the principal-value sense. The use of (2.10) in (2.9) allows thc 
separation of the transient from the steady-state time-harmonic components. Here, 
use will be made of the following Lemma from the theory of Fourier integrals: 

LEMMA 1 .  

in [O, co), then as t + co 
I f  the real function f (k) has a positive zero at k = a and the function F ( k )  is  regular 

eitf (k) 
PV lom F ( k ) f o  = ni- F ( a )  + O ( l / t ) .  (2.11) 

Iff (k) has no zeros in the range of integration, then the integral is  of O(l / t ) ,  as t - t  CO. 

Substituting (2.10) into (2.9), letting t+ co and making use of Lemma 1, the wave 
source potential reduces to the form 

If "a)l 

Qi = @jis + QiT 

with QiT = O( l / t )  as t --f 00, and 
Qis = Re (Gi eiwit), 

(2.12) 

( 2 . 1 3 ~ )  

eiu(s-50+iu(u-s&, (2 .13b)  

where v; = (o,-ie)2/g. The shift of the wavenumber vi = w t / g  in the negative 
imaginary plane by a small quantity E enforces the deviation of thc k-contour of 
integration above the pole a t  k = vi in the limit as E + O .  This is suggested by the 
contribution from the second term in the right-hand side of (2.10), following the 
application of Lemma 1. This choice of the k-integration ensures the validity of 
the Sommerfeld radiation condition in the linear problem. 

defines the 
radiation Green function, while the interaction of @j0  and @jl or @j2 defines the 
diffraction Green function. They are derived in the next section. 

The second-order interaction of the velocity potentials Q1 and 

3. The second-order Green functions 
This section presents the derivation of the time-harmonic radiation and diffraction 

second-order ' Green functions '. They can be more accurately described by the name 
' elementary second-order wave-source potentials '. The former name has been 
adopted for the sake of brevity and convenience. Conventional Green functions are 
singular a t  the location of the source and usually satisfy all boundary conditions of 
the boundary-value problem being solved, except for the body boundary condition. 
Neither of these two conditions are met by the present elementary solutions. They 
are regular a t  the location of the source, and only an appropriate linear combination 
of them satisfies the second-order free-surface condition. Otherwise, they are subject 
to the Laplace equation in the fluid domain and can be expressed in the form of 
explicit Fourier integrals. They are obtained from the solution of associated initial- 
value problems by allowing time to approach infinity. As in the linear problem, this 
approach allows the derivation of the proper radiation condition for the second-order 
velocity potentials. The analysis which allows the transition from the transient to the 
time-harmonic disturbance is outlined first, and is followed by the definition of the 
sum- and difference-frequency Green functions. 
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Keeping quadratic terms in the Taylor-series expansion of the free-surface 
conditions (2.1) and (2.2) around z = 0, we obtain for the second-order velocity 
potential @it’ +g@P) = Q(x, y, t )  on z = 0, (3.1) 

where the linear velocity potential @(l) is defined by (2.7), (2.8) and (2.9). The 
substitution of the linear velocity potential (2.7) in (3.2) generates three contributions 
to the second-order potential @@). Quadratic products of @ j o  define a boundary-value 
problem for the second-order correction to the linear incident waves. For deep-water 
monochromatic waves this correction is known to vanish. This can be verified by 
substituting (2.8) in (3.2). For bichromatic or bidirectional regular waves second- 
order corrections exist. Their form in deep water is derived in $4, A discussion of their 
properties in water of finite and infinite depth is presented by Ogilvie (1983). 
Quadratic products of the transient wave source disturbance (2.9) define a second- 
order problem for the radiation Green function. Cross products of the incident-wave 
and either of the wave source disturbances define the second-order problem for the 
diffraction Green function. 

Assume that the second-order velocity potential @(2) is subject to the initial 
conditions 

@‘2’(x>y, 0,O’) = A(x, y), @p12’(x, y, 0,O’) = B(x, y), (3.3) 

applied on the ( z  = 0)-plane. In  the transient problem studied here and for finite t ,  the 
functions Q(x, y, t ) ,  A ( x ,  y) and R(x, y) decay sufficiently rapidly as R = (x2+y2) + cc 
for their Fourier transform with respect to the (x,y)  coordinates t,o exist. Let 

(3.4) 

Fourier transforming (3.1) and dropping the superscripts in the second-order 
potential, we obtain 

c5‘tt(u, 21,z = 0, t )  +g&.,(u, v, z = 0, t )  = $(u, v, t ) .  

6zz - (u2 + v2) 6 = 0. 

&(a, v ;  2, t )  = C(u,  v ;  t )  f P 2 + V Z ) !  

C(u ,  v ;  t),,+g(u2+v2)QL, v ;  t )  = &(u, v ;  t ) ,  

(3.5) 

Since @j satisfies the three-dimensional Laplace equation, 6 is subject to 

(3.6) 

13.7) 

Solutions of (3.6) which vanish as z + - co are of the form 

Substituting (3.7) into (3 .5) ,  we obtain the differential equation for C(u ,  v ;  t )  

(3.8) 

subject to the initial conditions 

E(u,v;O) =a(,,,), E t ( u , v ; 0 )  = B(u,v) .  

The solution to the initial-value problem (3.8)-(3.9) is 

(3.9) 

1 1 
C(u ,  v ; t )  = 2 cos ( ( g k ) i t )  +y sin ( ( g k ) i t )  + [ d7 sin ( (gk ) ;  ( t - -7))  &(u, v ;  -7) , 

(sk)y 
(3.10) 
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where k: = (u2+v2)i. Substituting (3.10) into (3.7) and inverting the double Fourier 
transform, we obtain 

+ r? sin ( ( g k ) t t )  + d7 sin ((glc);  ( t  -7)) O(u, v ;  7) 

Equation (3.11) is the solution to the second-order transient problem (3.1) and (3.3). 
The limiting behaviour of (3.11) as t+  00 is studied next. 

An inspection of (3.10)-(3.11) suggests that the first two terms in (3.10) arising 
from the initial conditions contribute decaying transients to the second-order 
potential. This follows easily by an integration by parts of (3.11). Denote by 
QT(x, y ,  t )  the parts of Q containing the transient component of the linear wave source 
potential (2.9). Let 

d7sin((gk);(t-~))&,(u,v;7) = Im(cit(gk)'%J ( u > v . t ) )  3 > (3.12) 

where (3.13) 

Since 0, is finite a t  t = 0 and of O( l / t )  as t + 00, J ( u ,  v ;  t )  has no poles for real positive 
values of u, v and for any positive value of t .  Combining this behaviour with (3.12) 
and substituting in (3.11), we conclude using Lemma 1 that the contribution of the 
transient component of the linear solution to the second-order potential is also 
transient, decaying like O ( l / t )  as t + co. 

The transient component of the forcing function Q(x, y ,  t )  is hereinafter omitted. 
Invoking the quadratic dependence of Q on the linear solution, the time dependence 
of the incident-wave and source potentials (2.8) and (2.13), and making use of the 
iden ti ty  

Re(A,)Re(A,) = iRe(A,A,+A,A:), (3.14) 

where the * denotes complex conjugation, we may decompose the steady-state 
component of the forcing function Q into sum- and difference-frequency components 

&(x,  y ,  t )  = Re (Q+(x, y )  e i ( w m + w n ) t  + &-(x, y )  ei((+-wn)t ) >  (3.15) 

where m,n = 0,1,2.  The substitution of (3.15) into (3.11) leads to the evaluation 
of integrals similar to (2.10). Here, the frequency SZ- = w,-w, is negative, when 
0, < w,. Substituting (3.15) into (3.11) and allowing t to approach infinity, it follows 
that the contribution from the three terms in (2.10) is the same as in the linear 
problem when 4' > 0. When SZ- < 0, the role of the second and third terms in the 
right-hand side of (2.10) are reversed. The second term contributes a transient and 
the third term generates the shift of the pole a t  k = 4'/g in the complex plane. This 
shift is, however, of opposite sign relative to the shift when 52' > 0. This follows from 
the negative sign of the argument of the exponential in the last term of (2.10) which 
leads to the application of the complex conjugate of Lemma 1. Therefore, the 
complex pole generated from the evaluation of the convolution integral in (3.11) in 
the limit t+ 00, is defined by 

N$ = [w, fw, - i sgn (wm k w,)  SI2/g, (3.16) 
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where 6 is a small positive parameter. The decomposition (3.15) suggests a similar 
decomposition for the second-order potential 

@(x, y, z ,  t )  = Re ( ~ ' ( x ,  y, z )  ei(wm+w*)t +v-(x,  y, x )  ei(f+-Wn)t), (3.17) 

where the complex velocity potentials ~k follow from (3.11) in the form 

(3.18) 

Equation (3.18) provides an explicit expression for the steady-state time-harmonic 
limit of the second-order solution. The radiation and diffraction Green functions will 
be obtained by supplying (3.18) with the functions 0' corresponding to each. 

The two-dimensional version of the solution (3.18) is obtained by an integration 
over the entire y-axis and use of the identity 

leading to 

m 

dy eivy = 2n: S(v), S-, (3.19) 

(3.20) 

where q"*(u) is the two-dimensional analogue of 0*(u,  v). 

in the remainder of this section. 
The derivation of the three- and two-dimensional Fourier transforms is presented 

3.1. The radiation Green functions 

3.1 , l .  Sum- frequency problem 

G', (equation (2.13)) in (3.2), we can identify the characteristic forcing terms 
Substituting the definitions of the time-harmonic wave-source potentials GI and 

&i(x ,y)  = - i (w ,+wz)VGl~VG,  

e - i ~ u 1 ~ l + u z ~ z ~ - i ~ v , ~ 1 + ~ 2 ~ 2 ~  e i~ (u l+uz )+ iy (v l+vz )  (3.22) 

where ki = (ui+v:):. 
The Fourier transforms of (3.21) and (3.22) are evaluated by using the identity 

dxdy eius+ivy = 41t26(u) S(v), (3.23) 

where S(x) is the Dirae delta function. To simplify the algebra, and without loss of 
generality, we will assume that the origin of the coordinate system is located above 
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the position of the source with index i = 2, so that gz = q2 = 0 with g, < 0 (see figure 
1 ) .  It follows that 

x e-i(ulcl+ulTJ S(u + u1 + u2)  6(v + v1 + w2)  

m e b i k l + 5 , ( ( U + U l ) 2 + ( ~ + ~ ~ ) z ) ~  ( v  1 2  v + kq + uul + vvl) 
= - 4i(w, + w 2 )  JJPm du, dw, 

(kl - uq) (((u+ u1)2+ (w +v1)2)i- u;) 

x e-i(U1Slfi"lvi). (3.24) 

An alternative form for (3.24) which may be more convenient for computations can 
be obtained by a transformation from the Cartesian to the polar wavenumber 
coordinate system, making use of the definitions 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

x 6(U+U1 +u2) S(w +wl +?I,) 

e b , S i + h ( ( U + U , j 2 + ( V + " l ) z ) ~ ( ( U + U 1 ) Z +  ( w + w 1 ) 2 ) t +  u2)  

k, - u; 
= -4iw, du, dv, 

e-i(u,S,+iv,hl) (3.31) 

In  terms of the polar coordinates, (3.31) can be rewritten in the form 

Equations (3.24)-(3.32) complete the derivation of the Fourier transforms of the 
forcing functions Qf;,, for the sum-frequency problem. 

3.1.2. Difference-frequency problem 
The forcing functions corresponding t o  the difference-frequency problem are 

defined as follows 
Qi(x ,y)  = -i(w,-ww,)VG,-VC:, (3.33a) 

(3.33b) 
a 
aZ Q;(x, y) = iw, G, - (G,*, - v2 G?), 
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where the * denotes the complex conjugate of the quantity involved. Their Fourier 
transforms are evaluated as in the sum-frequency problem. They take the form 

e 5 1 k , + 5 2 ( ( ~ + U l ) 2 + ( v + ~ i j 2 j ~  (v, v2 + k; + uul + vv,) 
(kl - v?) [((u + u1)2+ (v + v,)"i- (v"z*] 

$2 = - 4i(w1 - 0,) JJ-mm du1 dv1 

e-i(u,5,+iv,vlf 

(3.34) 

The availability of the Fourier transforms 02, allows the definition of the respective 
radiation Green functions %i,B by a substitution in (3.18), 

where x = R cos 13, y = 11 sin 0. (3.37) 

The two-dimensional form of the Fourier transforms derived so far follows from 
(3.24) and (3.35) for the sum- and difference-frequency problems respectively. 
Setting v = v1 = 0 in the integrands and omitting the integration with respect to the 
latter variable, we obtain 

(3.38b) 

The substitution of (3.38) into (3.20) produces the two-dimensional radiation Green 
functions. 

3.2. The diffraction Green functions 

3.2.1. Sum-frequency problem 

The diffraction problem is defined as the interaction of the incident wave with the 
source with index i = 1 here located under the origin of the coordinate system, so 
that 6, = v1 = 0 with 6, < 0. The corresponding forcing functions are defined by 

Q i ( X > Y )  = -i(w,+w,) (Vp30.VGl) 

(3.40) 
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The Fourier transforms of Q2,B are evaluated as in the radiation problem. They take 
the form 

B",(u,v) = -47cg~[((u-v,)2+v2)++ vl] e51((u-vo)2+uz)+. (3.42) 

3.2.2. Uifference-frequency problem 
Proceeding along the same lines, we define the forcing functions 

&,(x,y) = -Wl-q) (Vqo.VG,*), (3.43) 

(3.44) &B(? y )  = i~ , (p ,  (GT, - v1 @,*), 
a 

which possess the Fourier transforms 

~ , ( u ,  v) = - 4 x g ~ [ ( ( u -  vo)2 + v2)$+ vl] ecI((u-vo)z+v2)'. (3.46) 

The diffraction Green functions for the sum- and difference-frequency problems are 
denoted by 9 2 , B  and are defined by substituting (3.41)-(3.42) and (3.45)-(3.46) into 
(3.18) 

ekz-iR cos (+S) 

9 i , B ( R ,  0, Z )  = - x:zg s,: lcdk 1; d$ k-N$ 0 2 , B ( k  $L (3.47) 

where o i , B ( k ,  $) are defined by 

(3.48) 

o$(u, v) = -4ng~[p(k ,  vo, 7c + $1 + vll e c 1 ~ ( ~ ~ ~ 0 , ~ + @ ) .  (3.49) 

For finite negative values of the vertical source coordinates Ci, both the radiation and 
diffraction Green functions are regular functions in the entire fluid domain. This is 
ensured by the exponential decay of the functions o i , B ( k ,  $) as the wavenumber k 
tends to infinity. This property of the second-order Green functions differentiates 
them from their linear counterpart, which is known to be l / r  singular near the 
source. 

The two-dimensional form of the Fourier transforms &"i,B of the diffraction 
problem are obtained as in the radiation problem, and are defined by 

(3.50) 

@$(u) = -2gA(lu-vol+v,) eclIu-vol. (3.51) 

The substitution of (3.50) and (3.51) into (3.20) produces the two-dimensional 
diffraction Green functions. 

4. Formulation of the second-order problem 
Consider the interaction of random ambient waves with a freely floating body. 

According to linear theory, a random seaway can be approximated by the linear 
superposition of a sufficiently large number of regular plane progressive wave 
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FIGURE 2 

components of different frequencies and headings. The energy density of each 
component is defined by the ambient wave spectrum. I n  linear wave-body 
interactions, coupling between two components of the spectrum is not possible while 
such a coupling occurs in the second-order problem. It is therefore sufficient to group 
the incident-wave components in pairs, and study the second-order interaction of 
each pair with the body. 

Figure 2 illustrates a freely floating right body and a Cartesian coordinate system 
fixed relative to the calm position of the free surface. Two deep-water plane 
progressive waves of different frequency and heading are incident upon the body. 
They are defined by 

eu,z-iu,zcosp,-iu,ysinp~+iS,, 
(PI1 = - 

w1 
(4 . la )  

(4.1 b)  

where 6,, 6,  are the statistically independent phases. The second-order velocity 
potential resulting from the interaction of the two incident waves exists and can be 
determined by utilizing the analysis of $3.  I ts  sum- and difference-frequency 
components are defined as in (3.17), with the corresponding forcing functions given 

Q ~ ( x ,  Y) = -iQ+Vv,i*V(~,2 
by 

= iQ+Al A ,  w1 w 2 [ l  - cos (p, -p2)l e-i(l+z+m+y)+i(~,+~*) 

= &-Al A, w1 w2[l + cos (p, -pz)l e-i(l-s-im-y)+i(S,-B,) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where 52' = w1 f wz. The forcing functions Q; vanish for deep-water regular waves. 
Evaluating the Fourier transforms of Q,' with respect to the (z, y)-coordinates, 
making use of the identity (3.23) and substituting into (3.18), we obtain the sum- and 
difference-frequency second-order complex velocity potentials resulting from the 
interaction of qI1 and q12, 

Qj(x,  Y) = -iQ-Vv,, .Vv& 

I' = v1 cosp1f.u2 cosp,, 

m+ = u1 sinp1fu2 sinp,, 

(4.6) 
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The vanishing of the denominator of (4.6) does not lead to a singularity. In  the sum- 
frequency problem we have 

1 + 2 + r n + 2  = v;  + v;  + 2v1 u2 cos (p, -/!Iz). (4.7) 

The maximum value of this wavenumber, attained for p1 = p2, is always smaller than 
W2/g  by virtue of the inequality 

(4.8) 

(Zp)2+(m-)2 = v ~ + v ; - 2 u 1 v ,  cos(p,-p,). (4.9) 

Iv1+ v21 < (w1+ w2)2/9.  

The corresponding wavenumber in the difference-frequency problem is defined by 

We may assume without loss of generality that w1 > w2.  The minimum value of the 
wavenumber (4.9), attained for = pz, is always larger than QP2/g by virtue of the 
inequality v1 - v2 > (w ,  - w 2 ) 2 / g  which reduces to an equality when Q- = 0. In  this 
case, however, the singularity in the second-order potential (4.6) is offset by the 
multiplicative factor 52-. This analysis completes the solut,ion of the second-order 
incident-wave potential. 

The linear interaction of each incident-wave potential with a freely floating body 
generates a body-wave disturbance which consists of the radiation and the 
diffraction components. Their sum is described by the complex velocity potential 
qB which can be determined from the solution of a boundary-integral equation. The 
'source distribution ' method represents the velocity potential as follows 

r r  

(4.10) 

The Green function G ( x ; < )  is defined by (2.13) and the source strength is obtained 
from the solution of the Fredholm integral equation 

(4.11) 

where the function W ( x )  is the known normal velocity of the body boundary. An 
alternative popular formulation is based on the application of Green's theorem and 
leads to a similar integral equation for the velocity potential. It takes the form 

Following the solution of (4.12) for cpB(x) on the body boundary, the same equation 
can be used to represent the velocity potential in the fluid domain, with the leading 
factor 2x replaced by 4x. 

Denote by qBi, i = 1,2 the linear wave disturbances resulting from the interaction 
of each of the two incident waves with the body. The total linear disturbance is 
defined by the velocity potential 

@(l) = Re [(vI1 +qBl) eiWlt + (qIz +qB2) ei"zt]. (4.13) 

The second-order problem accounts for interactions of the four components contained 
in (4.13), complying to the second-order free-surface and body-boundary conditions. 
The former is determined by substituting (4.13) into (3.2). The latter is enforced on 
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the mean position of the body boundary and is derived by Ogilvie (1983) in the 
form 

(4.14a) 

d 
dt 

V2)(x) = n.-(c(z)(t)+a(2)(t) x ~ + H ( t ) x ) - n . [ ( c ( ' ) + a ( ~ '  x x ) . V ] V @ ( ~ )  

1 +(a(')  x n ) . [ ~ ( r ( l ) ( l ) t a ( ' ) ( ~ )  d x x) -V@( ' )  , (4.14b) 

where <(l), a(l) and <(2) ,  a@) are the linear and second-order translation and rotation 
vectors. The components of the former are given by <(') = (el, c2, t3), a") = (t4, &, &) 
and the matrix H is defined by 

2 
:: ) .  (4 .14~)  H =  -- -2c4& [:+[: 

Since the boundary-value problem governing the second-order potential is linear, the 
second-order disturbance can be obtained by the linear superposition of two 
components. The first satisfies the non-homogeneous body-boundary condition 
(4.14) and the linear free-surface condition, and can be determined from the solution 
of an integral equation similar t o  (4.11) or (4.12). Equation (4.14) requires the 
evaluation of second derivatives of the linear velocity potential on the body 
boundary, which may not be easy to obtain with suficient accuracy by existing 
methods of solution of the linear problem. It will be shown in 97 that if only the 
integrated forces are desired, they can be obtained from a reciprocity relation which 
requires the evaluation only of single derivatives of the linear potential on the body 
boundary. The second component of the second-order problem satisfies the free- 
surface condition (3.1)-(3.2) and a homogeneous Neumman condition on the mean 
position on the body boundary. The determination of this latter disturbance will be 
the focus of the remainder of this and the next two sections. 

Following the convention adopted in $3, the word radiation labels the second- 
order disturbance driven by quadratic products of linear body-wave disturbances, 
including the linear diffraction potential. This use is justified by the similar 
properties of the linear radiation and diffraction velocity potentials. The word 
diffraction is reserved for the second-order component driven by quadratic products 
of the incident and body-wave disturbances. 

Two characteristic bichromatic 'radiation ' and two 'diffraction ' forcing terms are 
sufficient to consider in the free-surface condition (3.2). In  the radiation problem 
they are defined by 

(4.15) 

0 

(:2;:6 -2&& g+g 

a 

1 a 

Q?(x, y, t ,  = -% (v@BI'v@B2)> 

Q:Cx, Y, ') = - @ B l t G ( @ B 2 t t + g @ B 2 z ) !  (4.16) 
9 

and in the diffraction problem by 

(4.17) 
a 

i a  

&:(x, y, '1 = - % ( v @ I , *  v@B2)> 

Q E ( X >  Y, t )  = - @11t ( @ ~ z t t  + g @ ~ 2 ~ ) .  (4.18) 
g 
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The bichromatic character of these forcing terms permits the construction of the full 
second-order solution driven by the linear velocity potential (4.13) as the linear 
superposition of the radiation and diffraction solutions obtained from the forcing 
terms (4.15)-(4.18). Where necessary the frequency of linear disturbance with index 
i = 1 may be allowed to coalesce with the frequency of the disturbance with index 
i = 2. 

We conclude the present section with the st,atement of the typical boundary-value 
problem governing the second-order potential 

Vcp = 0,  (4.19) 

-Q2q+w, = Q(x ,  y),  on z = 0, (4.20) 

(4.21) 

The set of equations (4.19)-(4.21) must be supplemented by a radiation condition in 
order to ensure uniqueness. Direct boundary-integral numerical solutions of 
(4.19)-(4.21) which discretize the free surface and utilize the Rankine source 1 / r  or 
the linear Green function (2.13) as the elementary solution, must make explicit use 
of this radiation condition over the infinite end of their computational domain. The 
explicit use of a radiation condition is unnecessary if natural elementary solutions or 
Green functions are used to solve the associated boundary-value problem. The linear 
wave source potential (2.13) is, for example, the natural elementary solution of the 
linear problem invoking the Sommerfeld radiation condition implicitly via its 
definition. The natural elementary solutions for the boundary-value problem 
(4.19)-(4.21) forced by the four functions (4.15)-(4.18) are the four Green functions 
derived in $3. As is the case with the linear Green function, radiation conditions are 
contained in their definitions, but will not be explicitly used for the solution of the 
second-order problem presented in the next section. 

5. Solution of the second-order problem 
The method of solution for the sum- and difference-frequency problems, and for 

the components in each problem driven by forcing terms of the A -  of B-type is the 
same. Any distinction between them is not essential in the ensuing derivation and is 
dropped. We adopt the convention that the radiation Green function 9 corresponds 
to any of its four components defined in (3.36). A similar convention is adopted for 
the diffraction Green function 9 (see equation (3.47)). The radiation and diffraction 
problems will be considered separately, with the latter treated first due to its relative 
algebraic simplicity. 

5.1. Diffraction problem 

The diffraction velocity potential cp(x) is subject to  the body-boundary and free- 
surface conditions 

-Q2rp+sg)z = QD(x, y), on x = 0, (5.2) 
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where the function QD(x, y) is the sum- or difference-frequency component of the 
forcing terms defined by (4.17) or (4.18). In  connection with the source distribution 
method, the linear body-wave potential F~~ is defined by 

where the diffraction Green function 9 is subject to either of the free-surface 
conditions (9  3) 

(5.5a) 

(5.5b) or 

with yI1 defined by (4 . la)  and G, by (2.136). The right-hand side of the free-surface 
conditions (5.5) here corresponds to the sum-frequency problem. The ensuing 
derivation can be repeated in an identical manner for the difference-frequency 
problem. 

Taking the inner product of the gradient of (5 .3)  with VQ)~,, interchanging the 
differentiation and integration and using the free-surface condition (5.5), we 
obtain 

- 0 2 9 ( x ;  5 )  + qBZ(x;  5 )  = - iQVp?,,.V, G,(x; <), 

a 
ax - Q 2 q x ; 5 ) + q 9 z ( x ; 5 )  = - ; w , ~ , , - ( G , , ( x ; e , - Y , G , ( x ; 5 ) ) ,  

QD(x, Y) = -iQv~I,(x).V~ps,(x) 

= - Q 2 q 3 ,  + Wp,. (5 .6)  

Equation (5.6) shows that the velocity potential vP(x) satisfies the non-homogeneous 
free-surface condition (4.17)-(5.5a). A similar proof holds for the free-surface 
condition (4.18)-(5.56), as long as the relevant Grecn function is used. The 
interchange of the differentiation and integration in (5.6) is permissible for x =k 5 
which is the case when x is located on the free surface and 5 on the body boundary. 
Care must be exercized near the intersection of the body with the free surface. The 
local behaviour of the second-order solution will be analysed later in this section. 

The velocity potential y P ( x )  is hereinafter referred to as the particular solution 
because it satisfies the non-homogeneous free-surface condition. The body boundary 
condition is enforced by the addition of a homogeneous solution yH(x), subject to the 
linear boundary-value problem 

-Q2yH +wHZ = 0, on x = 0, (5.7) 

Therefore the solution of the second-order problem is 
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where qP is determined explicitly in terms of the diffraction Green functions and the 
linear source strength distribution vz(x) (equation (5.4)), and rpH is obtained from the 
solution of the linear problem (5.7)-(5.8). In  taking the normal derivative of the 
particular solution in ( 5 . 8 ) ,  no mention was made of its behaviour in the vicinity of 
the body boundary. The velocity potential q+(x) is harmonic in the entire fluid 
domain, including the domain interior to the body boundary. This follows from the 
regularity of the second-order Green functions (3.47)-(3.49) a t  x = 5 .  

In  connection with the Green method, the particular solution q+ is defined by 

(5.10) 

The remainder of the solution is the same. 

5.2. Radiation problem 
The radiation velocity potential is again denoted by p, and is subject to the 
conditions 

% = o ,  ons, ,  
an (5.11) 

- Q 2 p , + ~ ,  = QR(x, y), on z = 0, (5.12) 

where the forcing function in (5.12) is the sum- or difference-frequency component of 
the forcing functions defined by (4.15) or (4.16). Since the radiation Green functions 
represent the second-order interaction between two distinct submerged sources, the 
particular solution for the radiation problem takes the form 

p , P W  = SS,, d51 g1(5,) ss,, d5z gz(5,) 51,5,). (5.13) 

The proof that this particular solution satisfies the free-surface conditions (4.15) or 
(4.16), when equipped with the radiation Green function of the A -  or B-type 
respectively, follows the steps of the corresponding proof in the diffraction problem. 
This particular solution is again supplemented by a homogeneous component qH 
subject to the equations (5.7)-(5.8). The regularity of the particular solution at  the 
interior of the body boundary is valid in the radiation problem as well, by virtue of 
the regularity of the corresponding Green functions defined by (3.36). 

In  connection with the Green method, the particular solution of the radiation 
problem can be expressed in the form 

It follows from the present method of solution of the radiation and diffraction 
problems that the properties of the second-order velocity potential are shared by the 
particular and homogeneous components. The former, being regular in the entire 
fluid domain, can be regarded as the ‘incident flow’ forced by the non-homogeneous 
free-surface condition. Its behaviour a t  infinity can be determined by the far-field 
asymptotics of the second-order Green functions. The homogeneous component can 
be regarded as the ‘disturbance flow’ which no longer needs to satisfy the non- 
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homogeneous free-surface condition, a ‘burden ’ assumed by the particular 
component. Thus, it is determined from the solution of a linear problem and is 
subject to the Sommerfeld radiation condition at infinity. The sum of the particular 
and homogeneous component is ‘a  ’ solution of the boundary-value problem 
(4.19)-(4.21)’ satisfying the radiation condition a t  infinity implied by the explicit 
definition of the former and the method of solution of the latter. To establish that 
this is ‘the only ’ solution of this problem we need a uniqueness theorem which we 
lack in the second-order problem. A proof that solutions exist is often harder to  
establish. This is, however, not the case with the present method of solution. The 
explicit form of the particular component and the availability of existence theorems 
in the linear problem (John 1950) governing the homogeneous component, are 
sufficient to establish the existence of a solution for a certain class of body 
geometries. 

5.3. Solution behaviour near the interaection of body with free surface 
In  the vicinity of the body waterline the particular solution develops a singular 
behaviour which originates from the singularity of the second-order Green functions 
when Ci = 0 and (x, y, z )  approaches their location on the free surface. A similar 
singular behaviour is present in the homogeneous solution qH, related to qp by the 
boundary-value problem (5.7)-(5.8). The structure of this singular behaviour will be 
studied next. Aside from its fundamental interest, its knowledge is essential for the 
development of a robust numerical solution of the second-order problem for surface- 
piercing bodies. 

Over radial distances from the body waterline small compared to the local radius 
of curvature, the flow may be assumed to be locally two-dimensional. We will 
therefore confine our attention to the two-dimensional second-order flow in the 
vicinity of the intersection of a body section with the free-surface. While convenient 
from the algebraic standpoint, this reduction is not expected t,o be restrictive in 
revealing the nature of the singular behaviour near the waterline in the three- 
dimensional problem. Only bodies which pierce the free surface at right-angles will 
be considered. This assumption is not restrictive for a wide range of bodies 
encountered in practice, it leads to  a more regular behavour relative to the case 
where the intersection angle differs from go”, and is less testing of the perturbation 
expansion in the vicinity of the body waterline. 

The non-homogeneous terms in the second-order free-surface condition are 
functions of a linear solution the local behaviour of which will be studied first. The 
linear velocity $(x) is subject to the free-surface and wall conditions 

$z-u$ = 0 on z = 0,  (5.15) 

#z = U ( z )  on x = 0. (5.16) 

The wall is assumed to be vertical over a finite distance beneath the free surface. The 
ensuing analysis will isolate and determine the ‘non-analytic ’ component of # near 
r = (x2 + z2)i  = 0,  omitting contributions which are analytic a t  the origin of the 
coordinate system. 

X k ,  z )  = Q1,- U#> 
The ‘reduced potential ’ 

(5.17) 

is subject to (5.18) 

and Xz(O, 2) = U’(2) - uU(z)  = V ( z ) .  (5.19) 
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z 

FIGURE 3 

The limiting value Vo = V ( z  = 0) will be hereinafter used in the boundary conditions 
(5.19) for the derivation of the leading-order behaviour of the velocity potentials x 
and q5 as r = (zz + z2);+ 0. Higher-order terms in the Taylor series expansion of V ( z )  
as z --f 0 vanish at the origin and contribute higher-order corrections. I n  terms of the 
complex variable w = z+iz  = r eiH, the solution of (5.18)-(5.19) for the complex 
reduced potential G(w) = x+ir is 

(5.20) 

The complex velocity potential F ( w )  = q5(x, z )  + $(z, z )  is related to  the complex 
reduced potential G(w) by the relation 

G(w) =-(-iwlogw). VO 
n: 

G(w) == iF'(w) - vF(w), (5.21) 

which follows from the definitions (5.17). The solution of (5.21) for F ( w )  is 

F ( w )  = - i e-"'W dv eiuvG(v), (5.22) 
J wo 

where wo is a fixed complex number. Different selections for wo lead to differences in 
F(w) which are analytic functions of the complex variable w not affecting its singular 
structure as w + 0. Here we select w0 = 0, along with a contour of integration which 
is the radius connecting the origin with the complex location w (see figure 3). Over 
this contour, dw = e'*dr, and the modulus of the dummy variable v is bounded by the 
modulus of w. Keeping the leading-order term in the Taylor series expansion of the 
exponential terms in (5.22) and substituting the solution (5.20) for the complex 
reduced potential, we obtain for the real linear potential 

Certain properties of (5.23) deserve some discussion. For a body oscillating in heave, 
V ( z )  = 0, leading to a linear heave velocity potential which is analytic at r = 0. This 
analytic behaviour is also shared by the diffraction velocity potential, for which 
U ( z )  cc euz, or V ( z )  = 0. For a sway oscillation, Vo = -vU. In this case the local 
singular behaviour of the sway velocity potential decreases in magnitude with 
decreasing wavenumber v ,  leading to an analytical behaviour in the zero-frequency 
limit. For a rotational oscillation around the origin 0 with an angular velocity a,  
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V, = a, suggesting that the singular behaviour persists a t  all frequencies. Moreover, 
the r-dependence of the expansion (5.23) suggests that the singular component of the 
linear solution does not contribute to the body boundary condition a t  the intersection 
point, since ( l / r )  ( a # / a O ) + O  on 8 = -in: as r + O  when @ is supplied by (5.23). It 
follows that the body boundary condition is locally enforced by the analytic 
component of # which is omitted in (5.23). This analysis of the linear solution 
confirms that the value of the velocity potential and its first spatial derivatives are 
bounded a t  the intersection of the body section with the free surface. A more singular 
behaviour is expected if the intersection angle differs from 90". A detailed discussion 
of the local behaviour of the flow and review of earlier studies is presented by Stoker 
(1957). 

Turning to the second-order potential, we define two local second-order problems 
for the real velocity potentials Q),, : 

and 
%B a 

X - --Ncp, = #1=---(#2z-v$z) on z = 0, 
B -  az 

(5.24) 

(5.25) 

(5.26) 

(5.27) 

where N is either the sum- or the difference-frequency wavenumber. 
Consider first the solution of problem (5.24)-(5.25). Using the expansion (5.23) of 

the linear solution on 8 = 0, the leading-order behaviour of the free-surface condition 

(5.28) 

where C,  is a multiplicative constant, function of the reduced velocities of the linear 
velocity potentials and $,. The complex velocity potential g,(w) = XA(r,  8) + 
iY,(r, 0) with real part obeying the boundary conditions (5.28) and (5.25), is given 

(5.29) g,(w) = --iw log2 (iw). 
by 

C A .  

n: 

The solution for the corresponding complex velocity potential F ( w )  = q A ( r ,  8) + 
i@,(r, 8) is obtained by substituting (5.29) into (5.22) and proceeding as in the linear 
problem. After some simple algebra, we obtain for the second-order potential Q), 

C ,  r2 
cpA(Y> 8 )  ly -7 2 [cos28(log2r-logr+$) 

-2(logr-+) (8+$n:) ~ i n 2 8 + ( 8 + $ ) ~  cos281. (5.30) 

The leading-order singular behaviour (5.28) of the free surface condition is the same 
if any of the linear velocity potentials is replaced by the incident-wave potential. 
Thus, the expansion (5.30) characterizes the behaviour near the intersection of the 
body and the free surface of both the second-order radiation and diffraction velocity 
potentials forced by the non-homogeneous free-surface condition (5.24). 
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The leading-order behaviour as x+O of the free-surface condition (5.26) is again 
obtained by using (5.23) on 0 = 0. It follows that 

X, = G, log 1x1 + O(x log Ixl), on x = 0. (5.31) 

The complex reduced velocity potential subject to (5.31) on the free surface and 
(5.27) on the wall is simply given by 

ce,(w) = c, logw, (5.32) 

and upon substitution in (5.22), it  follows that 

vB(r, 0) - C, r(sin 0 log r +  0 cos 0). (5.33) 

Equation (5.33) indicates that the component of the second-order solution forced by 
the free-surface condition (5.26) is more singular than the component forced by 
condition (5.24), possessing a finite value but an unbounded vertical derivative at  the 
intersection. It is here important to emphasize that expansions (5.30) and (5.33) 
characterize the singularity of the second-order solution when the linear sway or roll 
radiation potentials are involved in the second-order free-surface conditions (5.24) 
and (5.26). The linear heave radiation and diffraction potentials are analytic a t  the 
intersection for a 90" intersection angle, and their presence in the second-order free- 
surface condition generates an analytic local behaviour for the corresponding second- 
order potential. 

In  existing numerical solutions of the second-order problem, integrals are being 
evaluated by quadrature over the free surface involving in their integrand the non- 
homogeneous terms of the free-surface condition. It follows from the limiting 
behaviour (5.31) that in the two-dimensional problem these terms are logarithmically 
singular. A similar singular behaviour is expected in three dimensions and must be 
carefully accounted for in an integration by quadrature. 

The singular behaviour (5.30) and (5.33) of the two components in the second- 
order velocity potential are valid independently of the method of solution of the 
boundary-value problem (4.19)-(4.21). The method of solution presented in the first 
part of the present section constructs the second-order potential as the superposition 
of a particular and a homogeneous component. It will next be shown that either is 
no more singular than their sum. Knowledge of the singular behaviour of the 
homogeneous solution will be necessary in the last part of this section for the 
derivation of reciprocity relations for the second-order forces and moments acting on 
the body. It is sufficient to establish the singular structure of the particular solution 
near the intersection. The homogeneous solution vH can be no more singular that the 
particular solution rpp by virtue of the body boundary condition (5.8) relating them. 
The particular solution is subject to a non-homogeneous free-surface condition 
obtained by using the linear solution vSZ defined by (5.3). For a wall-sided body 
section, the use of the two-dimensional form of the Green function G, in (5.3) leads 
to the normal velocity U ( z )  = +u(z) ,  satisfied by vSZ on the body boundary in the 
vicinity of the intersection point. Therefore, the local singular behaviour of this 
linear velocity potential qSZ is described by the expansion (5.23). 

As is the case for the total second-order potential, the local singularity structure 
of the radiation and diffraction particular solutions is the same, thus only the latter 
will be studied here. The diffraction particular solution is defined by (5.4). Because 
of the regularity of the Green function 9 ( x ,  5 )  this representation allows its definition 
in the entire vicinity of the intersection point including the interior of the body 
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boundary, while enforcing no condition on its boundary. The derivation of the local 
singular behaviour of vP will make use of the local expansion of the free-surface 
condition both for x > 0 and x < 0 on z = 0. Starting with the free-surface condition 
of the A-type (equation (5.24)) and using the expansion (5.23) of the linear potential 
on 0 = 0 and 0 = IT, we obtain for the corresponding reduced potential 

%;(XI 0) - c; x log 1x1. (5.34) 

Condition (5.34), valid on x = 0 both for positive and negative values of x, is sufficient 
to determine locally the complex reduced potential 95(w) 

$ q W )  - c; w log w, (5.35) 

and upon substitution in (5.22), the velocity potential p?f;(r,0) is obtained in the 
form 

(5.36) 

The expansion (5.36) confirms that the A-component of the particular solution is no 
more singular than the corresponding component of the total second-order potential 
(equation (5.30)). The corresponding behaviour of the homogeneous component 
follows from the dcfinition (5.9) and the expansions (5.30) and (5.36) and is no more 
singular than either the total or the particular solutions. Of interest in the 
development of a panel method for the numerical solution of the second-order 
problem is the behaviour of the normal velocity of the particular solution on x = 0 
as x+0. It follows by a differentiation of (5.36) that  its x-derivative on x = 0 is 
proportional to z log 1x1. By virtue of (5.8), a similar behaviour of opposite sign is 
shared by the derivative of the homogeneous component pz. 

For the B-component of the particular solution, the local behaviour of the 
condition satisfied by the corresponding reduced potential on the free surface is 

%%X> 0 )  - log 1x1, (5.37) 

leading to the complex reduced potential 

9 Z ( W )  - CE log w, (5.38) 

and to the real velocity potential 

p?E(r, 0) - CE r(sin 0 log r +  0 cos 0). (5.39) 

It follows from (5.38) that the singular behaviour of the B-component of the 
particular solution is symmetric relative to the x = 0 axis thus its normal velocity on 
the wall vanishes. This property of the leading-order normal velocity of the B- 
component of the particular solution is naturally shared by the normal velocity of 
homogeneous solution defined by (5.8), and suggests that the B-component of the 
homogeneous solution is less singular near the intersection than its particular 
counterpart. 

6. The second-order forces and moments 
The second-order hydrodynamic pressure force obtained from the solution of 

the radiation and diffraction problems (5.1)-(5.2) and (5.11)-(5.12) respectively, is 
obtained from the linear Bernoulli equation 

(6.1) P = - iQP(p?, +p?H). 
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The corresponding second-order forces and moments on the body are obtained by the 
integration of (6.1) over the mean position of its boundary 

X i  = -iQp Jjsb ( q p + q H ) n i d s  (i = 1, ..., 6) ,  (6.2) 

where n = (nl, n2, n3) and (n4, n5, n6) = (x, y ,  z )  x n. An alternative form of the exciting- 
force expression (moments are understood hereafter) can be obtained by the 
introduction of an auxiliary linear velocity potential $ i ( x )  subject to 

- 522$i i- g$iz = 0, on z = 0, (6.3) 

a$i - ni, onS,. 
an 

Both qH and $i satisfy the linear free-surface condition and a condition of outgoing 
waves a t  infinity. Applying Green’s identity, it  follows that 

Making use of the body-boundary condition (5 .8) ,  we may cast (6.5) in the form of 
the Haskind relations for the linear exciting forces, or 

X i  = - iQp JJsb ( ni pp - yki 
an 

The derivation of (6.6) using (6.5) made use of the singular behaviour of the 
homogeneous solution qH near the intersection to verify that there exists no localized 
contribution to Green’s identity coming from the part of the surface of integration 
in (6.5) enclosing the vicinity of the body waterline. Expression (6.6) circumvents the 
solution for the homogeneous component vH, replacing i t  by the auxiliary velocity 
potential $i, 

Denote by vB the sum- or difference-frequency second-order velocity potential 
subject to the body boundary condition (4.14) and the linear free-surface condition. 
Being the solution of a linear problem, the velocity potential qs satisfies the 
Sommerfeld radiation condition at infinity and the corresponding second-order force 
can be obtained either by direct pressure integration 

XF = -iQp /JsbqBnids (i = 1, ..., 6), (6.7) 

or by the reciprocity relation 

with the auxiliary velocity potential $i defined by (6.3)-(6.4). The derivation of (6.8) 
from (6.7) made use of Green’s identity (6.5), where again no localized contribution 
from the vicinity of the body waterline arises. The use of (6.8) versus (6.7) entails no 
savings in computational effort since the determination ofq, in (6.7) is replaced by the 
determination of $i in (6.8). I n  the former case, however, double derivatives of the 
linear velocity potential must be evaluated on the body boundary in order to  enforce 
the condition (4.14). It will next be shown that their determination can be avoided 
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if (6.8) is used. We hereinafter confine our attention to the component o f ~ ,  subject 
to the normal velocity 

@ = n . [ b ( x ) - ~ ] ~ $  (6.9) an 

on the body boundary, where 

b ( x )  = ( b 1 , b 2 , b 3 )  = ( 5 1 + x 5 , - Y ~ 6 ) i + ( 5 2 - 2 5 4 + x 5 6 ) j + ( 5 3 + Y 5 4 - x 5 5 )  (6’10) 

is the complex amplitude of the linear oscillatory body displacement a t  location x of 
its boundary, and $ is the complex linear potential. The form of (6.9) corresponds to 
the sum-frequency problem, and can be converted to that of the difference-frequency 
problem by replacing $ by its complex conjugate. Expanding the right-hand side of 
(6.9) we obtain 

33 = v,+v,+v3, (6.11a) 
an 

(6.11 b )  

(6 .11~)  

where b,(x) are defined in (6.10). The substitution of the normal velocity components 
(6.11) into (6.8) will permit the reduction of the double spatial derivatives of $ to 
single derivatives. A vector theorem will be used due to Tuck (Ogilvie & Tuck 1969) 
derived for the evaluation of the hydrodynamic coefficients in ship motion theory. I ts  
proof is repeated below and adapted to the present problem. Let f ( x )  be a scalar 
differentiable function defined on the body boundary and in the fluid domain and let 
$ be a velocity potential. The variant of Stokes’ theorem 

r r  r 

(6.12) 

where C, is the body waterline, is combined with the identity 

( n  x V) x (fV$) = fn x (V x V$)+f(n.V)V$-n(V$-Vf)+ (n.V$)Vf-fn(V-V$). 
(6.13) 

The first and last terms in the right-hand side of (6.13) vanish identically by virtue 
of the irrotationality and incompressibility of the potential flow represented by $. 
For wall-sided bodies which intersect the free surface a t  right angles, the vector dl 
is horizontal and the following identity holds 

d l x  V$ = n$,-k- .  a$ (6.14) 
an 

Combining (6.13) and (6.14) with (6.12), we obtain the desired vector identity 
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Identity (6.15) will be used with f = b j $ i , j  = 1 , 2 , 3 .  Its  x-component leads to 

which allows the double spatial derivatives on the linear velocity potential $ to be 
replaced by single derivatives on r# and the auxiliary potential ki. Combining (6.15) 
with (6.8)-(6.9) we obtain the similar replacement of all second spatial derivatives 
present in the second-order boundary condition (6.9). 

The reciprocity relations derived in the present section do not entail any savings 
in computational effort but are more convenient to use since $i can be determined 
as part of linear radiation problem. They resemble the reciprocity relations derived 
by Faltinsen & Loken (1978), Molin (1979) and Lighthill (1979) for the direct 
evaluation of the second-order forces which circumvent the determination of the 
second-order potential but require the evaluation of free-surface integrals involving 
products of the auxiliary potential and the forcing terms in the second-order free- 
surface condition. 

7. Discussion and conclusions 
A theory has been developed for the solution of the second-order surface wave 

radiation and diffraction problems around surface piercing bodies of arbitrary shape. 
Its principal element is the derivation of closed-form second-order Green functions 
which are used to construct an explicit particular solution satisfying the non- 
homogeneous free-surface condition. The body boundary condition is enforced by the 
addition of a homogeneous component subject to the linear free-surface condition 
and is determined from the solution of a linear problem. 

The principal effort required for the implementation of the present theory is the 
evaluation of the second-order Green functions involved in the definitions of the 
particular solution by equations (5.4), (5.10) in the diffraction and (5.13), (5.14) in the 
radiation problems. The determination of the homogeneous component can be 
carried out easily using existing numerical techniques for the solution of the linear 
problem. The implementation of the present approach with existing panel methods 
requires only the discretization of the body boundary, unlike other solutions which 
discretize the free surface. Furthermore, the accuracy of the linear solution need not 
be any greater than is necessary in the linear problem, as long as the second-order 
Green functions are evaluated with adequate accuracy. By comparison, the 
evaluation of the slowly convergent free-surface integrals in existing numerical 
solutions hinges upon a highly accurate linear solution. 

Given its robustness, the efficiency of the present method depends on the fast and 
accurate evaluation of the second-order Green functions. A similar statement holds 
true for the linear Green function when used for the solution of the linear problem 
by any of the boundary integral formulations presented in $4. Its inefficient 
evaluation is the principal reason why existing radiation-diffraction panel codes are 
often exercised in practice with unrealistically coarse discretizations. I ts  fast 
computation was the subject of a recent study by Newman (1985) which led to the 
development of efficient algorithms in water of infinite and finite depth. As in the 
linear case, the evaluation of the second-order Green functions is a task divorced 
from the shape of the body boundary or the number of panels required for the 



90 P. D. Sclavounos 

solution of the linear or second-order problems. It simply involves the numerical 
evaluation of explicit Fourier integrals and will be the subject of a future study. 

The present theory applies both in two and three dimensions, and can be extended 
to water of finite depth by deriving the corresponding Green functions. In  this case 
care must be exercised in the definition and interpretation of the second-order 
incident wave when the difference-frequency wavelength 2ng/(o, - on)' is large 
compared to the water depth. This problem has been addressed by Ogilvie (1983) and 
Agnon & Mei (1983). The third- and higher-order problems can also be treated along 
similar lines by deriving the corresponding Green functions. 

The technique developed in this paper for the second-order surface-wave radiation 
and diffraction problems is applicable to a wider range of fluid mechanical problems 
with weak nonlinearities which can be treated by the perturbation method. More 
evident are extensions to nonlinear surface-wave problems which involve bodies 
undergoing a steady-state or unsteady translation near a free surface. Of related 
character is the problem of the nonlinear interaction of ambient surface waves with 
underwater sound radiated or scattered by bodies near a free surface. 

In  the problerw discussed so far, the nonlinearity is present in a boundary 
condition rather than in the domain equation. Perhaps the most challenging flows in 
fluid mechanics are subject to nonlinear domain equations. For some of these 
problems, and under certain restrictions on the flow parameters, perturbation theory 
has proven userul (cf. Van Dyke 1975). An example is the slightly compressible 
isentropic flow past two- or three-dimensional bodies. The exact flow equation 
contains cubic nonlinear terms, functions of the velocity potential and its spatial 
derivatives. For sufficiently small Mach numbers in the steady-state case, these 
terms may be treated by the perturbation method starting either with the Laplace 
or with the Prandtl-Glauert equations in the linearized problem. The derivation of 
the cubic and higher-order Green functions would permit the solution of the 
corresponding problems around bodies of general shape by avoiding the discretization 
of the fluid domain. 

Finally, non-homogeneous linear domain equations forced by lower-order solutions 
also arise in connection with the use of perturbation/matched-asymptotic expansions 
to flows past elongated lifting and non-lifting bodies. The application of the present 
method to such problems is a t  present less evident, but appears to deserve some 
study. 
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